Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vet Sci ; 11(3)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38535857

RESUMEN

The recent emergence of anaplasmosis in camels has raised global interest in the pathogenicity and zoonotic potential of the pathogen causing it and the role of camels as reservoir hosts. In the United Arab Emirates (UAE), molecular studies and genetic characterization of camel-associated Anaplasma species are limited. This study aimed to characterize molecularly Anaplasmataceae strains circulating in dromedary camels in the UAE. Two hundred eighty-seven whole-blood samples collected from dromedary camels across regions of the Abu Dhabi Emirate were received between 2019 and 2023 at the Abu Dhabi Agriculture and Food Safety Authority (ADAFSA) veterinary laboratories for routine diagnosis of anaplasmosis. The animals were sampled based on field clinical observation by veterinarians and their tentative suspicion of blood parasite infection on the basis of similar clinical symptoms as those caused by blood parasites in ruminants. The samples were screened for Anaplasmataceae by PCR assay targeting the groEL gene. Anaplasmataceae strains were further characterized by sequencing and phylogenetic analysis of the groEL gene. Thirty-five samples (35/287 = 12.2%) tested positive for Anaplasmataceae spp. by PCR assay. Nine positive samples (9/35 = 25.7%) were sequenced using groEL gene primers. GenBank BLAST analysis revealed that all strains were 100% identical to the Candidatus A. camelii reference sequence available in the GenBank nucleotide database. Phylogenetic analysis further indicated that the sequences were close to each other and were located in one cluster with Candidatus A. camelii sequences detected in Saudi Arabia, Morocco, and the UAE. Pairwise alignment showed that the UAE sequences detected in this study were completely identical and shared 100% identity with Candidatus A. camelii from Morocco and Saudi Arabia and 99.5% identity with Candidatus A. camelii from the UAE. This study demonstrates the presence of Candidatus A. camelii in UAE dromedary camels. Further critical investigation of the clinical and economical significance of this pathogen in camels needs to be carried out.

2.
Animals (Basel) ; 14(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338005

RESUMEN

Middle East Respiratory Syndrome (MERS-CoV) is a coronavirus-caused viral respiratory infection initially detected in Saudi Arabia in 2012. In UAE, high seroprevalence (97.1) of MERS-CoV in camels was reported in several Emirate of Abu Dhabi studies, including camels in zoos, public escorts, and slaughterhouses. The objectives of this research include simulation of MERS-CoV spread using a customized animal disease spread model (i.e., customized stochastic model for the UAE; analyzing the MERS-CoV spread and prevalence based on camels age groups and identifying the optimum control MERS-CoV strategy. This study found that controlling animal mobility is the best management technique for minimizing epidemic length and the number of affected farms. This study also found that disease dissemination differs amongst camels of three ages: camel kids under the age of one, young camels aged one to four, and adult camels aged four and up; because of their immunological state, kids, as well as adults, had greater infection rates. To save immunization costs, it is advised that certain age groups be targeted and that intense ad hoc unexpected vaccinations be avoided. According to the study, choosing the best technique must consider both efficacy and cost.

3.
Front Vet Sci ; 10: 1244833, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929289

RESUMEN

Background: Zoonotic diseases, infections transmitted naturally from animals to humans, pose a significant public health challenge worldwide. After MERS-CoV was discovered, interest in camels was raised as potential intermediate hosts for zoonotic viruses. Most published review studies pay little attention to case reports or zoonotic epidemics where there is epidemiological proof of transmission from camels to humans. Accordingly, any pathogen found in camels known to cause zoonotic disease in other animals or humans is reported. Methods: Here, zoonotic diseases linked to camels are reviewed in the literature, focusing on those with epidemiological or molecular evidence of spreading from camels to humans. This review examines the risks posed by camel diseases to human health, emphasizing the need for knowledge and awareness in mitigating these risks. Results: A search of the literature revealed that eight (36.4%) of the 22 investigations that offered convincing evidence of camel-to-human transmission involved MERS, five (22.7%) Brucellosis, four (18.2%) plague caused by Yersinia pestis, three (13.6%) camelpox, one (4.5%) hepatitis E, and one (4.5%) anthrax. The reporting of these zoonotic diseases has been steadily increasing, with the most recent period, from 2010 to the present, accounting for 59% of the reports. Additionally, camels have been associated with several other zoonotic diseases, including toxoplasmosis, Rift Valley fever, TB, Crimean-Congo hemorrhagic fever, and Q fever, despite having no evidence of a transmission event. Transmission of human zoonotic diseases primarily occurs through camel milk, meat, and direct or indirect contact with camels. The above-mentioned diseases were discussed to determine risks to human health. Conclusion: MERS, Brucellosis, plague caused by Y. pestis, camelpox, hepatitis E, and anthrax are the main zoonotic diseases associated with human disease events or outbreaks. Transmission to humans primarily occurs through camel milk, meat, and direct contact with camels. There is a need for comprehensive surveillance, preventive measures, and public health interventions based on a one-health approach to mitigate the risks of zoonotic infections linked to camels.

4.
Front Vet Sci ; 10: 1182165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720473

RESUMEN

Background: The study of coronaviruses has grown significantly in recent years.Middle East respiratory syndrome coronavirus (MERS-CoV) replicates in various cell types, and quick development has been made of assays for its growth and quantification. However, only a few viral isolates are now available for investigation with full characterization. The current study aimed to isolate MERS-CoV from nasal swabs of dromedary camels and molecularly analyze the virus in order to detect strain-specific mutations and ascertain lineage classification. Methods: We isolated the virus in Vero cells and adapted it for in vitro cultivation. The isolates were subjected to complete genome sequencing using next-generation sequencing followed by phylogenetic, mutation, and recombination analysis of the sequences. Results: A total of five viral isolates were obtained in Vero cells and adapted to in vitro cultures. Phylogenetic analysis classified all the isolates within clade B3. Four isolates clustered close to the MERS-CoV isolate camel/KFU-HKU-I/2017 (GenBank ID: MN758606.1) with nucleotide identity 99.90-99.91%. The later isolate clustered close to the MERS-CoV isolate Al-Hasa-SA2407/2016 (GenBank ID: MN654975.1) with a sequence identity of 99.86%. Furthermore, the isolates contained several amino acids substitutions in ORF1a (32), ORF1ab (25), S (2), ORF3 (4), ORF4b (4), M (3), ORF8b (1), and the N protein (1). The analysis further identified a recombination event in one of the reported sequences (OQ423284/MERS-CoV/dromedary/UAE-Al Ain/13/2016). Conclusion: Data presented in this study indicated the need for continuous identification and characterization of MERS-CoV to monitor virus circulation in the region, which is necessary to develop effective control measures. The mutations described in this investigation might not accurately represent the virus's natural evolution as artificial mutations may develop during cell culture passage. The isolated MERS-CoV strains would be helpful in new live attenuated vaccine development and efficacy studies.

5.
Sci Rep ; 13(1): 14787, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684280

RESUMEN

Peste des petits ruminants (PPR) is an infectious viral disease, primarily of small ruminants such as sheep and goats, but is also known to infect a wide range of wild and domestic Artiodactyls including African buffalo, gazelle, saiga and camels. The livestock-wildlife interface, where free-ranging animals can interact with captive flocks, is the subject of scrutiny as its role in the maintenance and spread of PPR virus (PPRV) is poorly understood. As seroconversion to PPRV indicates previous infection and/or vaccination, the availability of validated serological tools for use in both typical (sheep and goat) and atypical species is essential to support future disease surveillance and control strategies. The virus neutralisation test (VNT) and enzyme-linked immunosorbent assay (ELISA) have been validated using sera from typical host species. Still, the performance of these assays in detecting antibodies from atypical species remains unclear. We examined a large panel of sera (n = 793) from a range of species from multiple countries (sourced 2015-2022) using three tests: VNT, ID VET N-ELISA and AU-PANVAC H-ELISA. A sub-panel (n = 30) was also distributed to two laboratories and tested using the luciferase immunoprecipitation system (LIPS) and a pseudotyped virus neutralisation assay (PVNA). We demonstrate a 75.0-88.0% agreement of positive results for detecting PPRV antibodies in sera from typical species between the VNT and commercial ELISAs, however this decreased to 44.4-62.3% in sera from atypical species, with an inter-species variation. The LIPS and PVNA strongly correlate with the VNT and ELISAs for typical species but vary when testing sera from atypical species.


Asunto(s)
Antílopes , Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Ovinos , Seroconversión , Peste de los Pequeños Rumiantes/diagnóstico , Anticuerpos , Animales Salvajes , Búfalos , Camelus , Cabras
6.
Vet World ; 16(6): 1277-1283, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37577185

RESUMEN

Background and Aim: Paratuberculosis (PTB) or John's disease is a chronic disease of ruminants impeding the reproduction and productivity of the livestock sector worldwide. Since there is a lack of pathological studies explaining the nature and development of the disease in camels, this study aimed to highlight the anatomopathological changes of PTB in camels, which may help in verifying and validating some diagnostic tests used to detect the etiology of the disease in camel tissues. Materials and Methods: In August 2017, at Alselaa border's Veterinary Clinic of Al Dhafra Region, Western Abu Dhabi, UAE, one imported culled she-camel of 2 years old was subjected to clinical, microscopic, and anatomopathological investigations along with real-time quantitative polymerase chain reaction (q-PCR) to confirm the infection and correlate between clinical signs and pathological lesions of the PTB in dromedary camels. Results: Clinically, typical clinical signs compliant with the pathognomonic gross and histologic lesions of PTB were seen in naturally infected dromedary camel. As presumptive diagnosis microscopically, acid-fast coccobacillus bacterium clumps were demonstrated in direct fecal smears as well as in scraped mucosal and crushed mesenteric lymph node films, and in histopathological sections prepared from a necropsied animal and stained by Ziehl-Neelsen stain. Free and intracellular acid-fast clump phagosomes were further confirmed as Mycobacterium avium subsp. paratuberculosis by q-PCR. Conclusion: Clinical signs and pathological lesions of paratuberculosis in a dromedary camel were found to be similar to those of the other susceptible hosts.

7.
Vet Sci ; 10(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36669056

RESUMEN

(1) Background: Peste des petits ruminants (PPR) is a highly contagious animal disease affecting small ruminants, leading to significant economic losses. There has been little published data on PPR virus (PPRV) infection in the United Arab Emirates (UAE); (2) Methods: four outbreaks reported in goats and Dama gazelle in 2021 were investigated using pathological and molecular testing; (3) Results: The infected animals showed symptoms of dyspnea, oculo-nasal secretions, cough, and diarrhea. Necropsy findings were almost similar in all examined animals and compliant to the classical forms of the disease. Phylogenetic analysis based on N gene and F gene partial sequences revealed a circulation of PPRV Asian lineage IV in the UAE, and these sequences clustered close to the sequences of PPRV from United Arab Emirates, Pakistan, Tajikistan and Iran; (4) Conclusions: PPRV Asian lineage IV is currently circulating in the UAE. To the best of our knowledge, this is a first study describing PPRV in domestic small ruminant in the UAE.

9.
Vet Sci ; 9(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35448652

RESUMEN

BACKGROUND: Fowl adenovirus serotype 4 (FAdV-4), causing inclusion body hepatitis (IBH) and hydropericardium hepatitis syndrome (HPS), is responsible for the significant economic losses in poultry industry worldwide. This study describes FAdV disease and molecular characteristics of the virus as the first report in UAE. METHODOLOGY: Clinical, necropsy, histopathology, qPCR and phylogenetic analysis of hexon gene were used to diagnose and characterize the virus. RESULTS: The age of the infected broiler chicken was 2-4 weeks. The morbidity and mortality rates ranged between 50 and 100% and 44 and 100%, respectively. Clinically, sudden onset, diarrhea, anemia and general weakness were recorded. At necropsy, acute necrotic hepatitis, with swollen, yellowish discoloration, enlarged and friable liver; hydropericarditis with hydropericardium effusions; and enlarged mottled spleen were observed. Histopathology examination revealed degeneration and necrosis, lymphocytic infiltration and inclusion bodies. The qPCR analysis detected the virus in all samples tested. Hexon gene sequence analysis identified FAdV serotype 4, species C as the major cause of FAdV infections in UAE in 2020, and this strain was closely related to FAdV-4 circulating in Saudi Arabia, Pakistan, Nepal and China. CONCLUSION: The serotype 4, species C, was the common FAdV strain causing IBH and HPS episodes in the region. This result may help design effective vaccination programs that rely on field serotypes.

10.
Open Vet J ; 12(1): 33-43, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35342736

RESUMEN

Background: Infectious Bursal Disease (IBD, Gumboro disease) has become more severe than in early outbreaks in the 1980s. The present research aims to study the epidemiology of IBD in Khartoum state and compare some commonly used laboratory techniques for diagnosis. Method: We collected epidemiological data from 30 farms that showed signs suggestive of IBD, estimated the morbidity and mortality rates, and interviewed the owners about the type and the doses of the used vaccines. We collected bursas of Fabricius for virus assays and histopathology. Samples positive in the agar gel immunodiffusion (AGID) test were inoculated onto chicken embryo fibroblast cell culture and embryonated chicken eggs. Twenty-two-day-old chicks were infected experimentally with three selected isolates, and morbidity and mortality rates were compared. Results: The results showed that 70% of outbreaks occurred between 6 and 8 weeks of age, and the mean mortality rate was 51%. Epidemiologic, clinical, gross, and histopathological findings were characteristic of the severe disease caused by the very virulent IBDvirus (vvIBDV). The farms that used intermediate or the intermediate plus vaccines had lowered mortality compared with the farms that used intermediate vaccines. The AGID was found more sensitive than the counter-immuno-electrophoresis (CIEP) since it detected 83.4% of the IBDV antigen in the samples while the CIEP detected 66.7% of the samples. The reverse transcriptase polymerase chain reaction (RT-PCR) was found to be rapid, specific, and was more sensitive detecting 100% of the tested samples. Virus isolation in embryonated eggs and cell culture was not successful. Conclusion: A vvIBDV is responsible for the recent outbreaks of the disease in Sudan, resulting in a mean high mortality rate of 51%, even in vaccinated flocks. The RT-PCR and AGID are the best methods for laboratory confirmation.


Asunto(s)
Infecciones por Birnaviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Enfermedades Inflamatorias del Intestino , Enfermedades de las Aves de Corral , Animales , Infecciones por Birnaviridae/diagnóstico , Infecciones por Birnaviridae/epidemiología , Infecciones por Birnaviridae/veterinaria , Embrión de Pollo , Pollos , Técnicas de Laboratorio Clínico/veterinaria , Enfermedades Inflamatorias del Intestino/veterinaria , Enfermedades de las Aves de Corral/diagnóstico , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/prevención & control , Sudán/epidemiología
11.
J Infect Dev Ctries ; 16(2): 374-382, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35298435

RESUMEN

INTRODUCTION: In recent years Peste des petits ruminants (PPR) disease caused several epidemics in a wide range of susceptible hosts. The ability of the peste des petits ruminants virus (PPRV) to cross the species barrier necessitates further research, particularly on disease circulation and cross-species transmission between typical and atypical hosts to guide and facilitate the eradication program anticipated by the Food and Agriculture Organization (FAO) and the World Organization for Animal Health (OIE) in 2030. The aim of this study is to explore the role of dromedary camels as transmitters for PPR. METHODOLOGY: Four experiments were carried out on clinically healthy seronegative camels, sheep and goats. In experiment I, the animals were inoculated with a PPR- positive suspension of camel pneumonic lung homogenate. In the other three experiments either sheep and goats were inoculated and after three days were housed with camels or vice versa. RESULTS: Marked clinical signs suggestive of PPR were seen in sheep and goats while camels showed mild infection. Severe clinical signs of PPR were seen in sheep and goats when kept with inoculated camels. Postmortem examination revealed PPR lesions in all inoculated animals including camels. CONCLUSIONS: This study showed that dromedary camels infected with PPRV can transmit the disease to sheep and goats, even when they developed mild clinical signs.


Asunto(s)
Peste de los Pequeños Rumiantes , Virus de la Peste de los Pequeños Rumiantes , Animales , Camelus , Cabras , Peste de los Pequeños Rumiantes/epidemiología , Peste de los Pequeños Rumiantes/patología , Rumiantes , Ovinos
12.
PLoS One ; 16(6): e0252893, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34101753

RESUMEN

Caseous lymphadenitis (CLA) or pseudotuberculosis is a chronic zoonotic bacterial disease caused by Corynebacterium pseudotuberculosis, which affects livestock and humans. This study aimed to describe the pathology, bacteriology and confirm the identity of the pathogen by 16S rRNA gene sequencing in Camelus dromedarius. A total of 12 camels with suspected CLA in three regions of Abu Dhabi Emirate (Abu Dhabi, Al Ain and Al Dhafra), United Arab Emirate (UAE) were subjected to clinical and postmortem examinations from January 2015 to December 2020. Clinically, camels were emaciated and showed the presence of external caseous abscesses suggestive of CLA. Postmortem examination showed multiple abscesses of variable sizes with caseous material encapsulated by fibrous tissue in the liver, lungs, muscle, and lymph nodes. Following clinical and postmortem examination, blood, pus and different tissue samples were collected for subsequent analysis. Histopathological examination of all organs stained with Hematoxylin and Eosin (H&E) indicated a central caseo-necrotic core that was admixed with bacterial colonies and infiltration of chronic inflammatory cells, surrounded by a pyogenic membrane, and an outer fibrous connective tissue capsule. Bacterial culture identified the isolates of Corynebacterium pseudotuberculosis biotype ovis strain, and these isolates were shown to be sensitive to all antibiotics tested (penicillin, ampicillin, Co-trimoxazole, enrofloxacin and tetracycline). Moreover, the identity of the isolates was confirmed by partial sequencing of the 16S rRNA gene which showed a 100% identity to Corynebacterium pseudotuberculosis. Phylogenetic analysis based on 16S rRNA gene sequence clearly differentiates Corynebacterium pseudotuberculosis from other species of Corynebacterium. Briefly, this study provided the basic information for infection of Corynebacterium pseudotuberculosis in Camels and will help in controlling of this pathogen in the region.


Asunto(s)
Enfermedades de los Animales/epidemiología , Infecciones por Corynebacterium/complicaciones , Corynebacterium/aislamiento & purificación , Linfadenitis/veterinaria , Enfermedades de los Animales/microbiología , Enfermedades de los Animales/patología , Animales , Antibacterianos/administración & dosificación , Camelus , Infecciones por Corynebacterium/tratamiento farmacológico , Infecciones por Corynebacterium/microbiología , Femenino , Linfadenitis/epidemiología , Linfadenitis/microbiología , Linfadenitis/patología , Masculino , Factores de Tiempo , Emiratos Árabes Unidos/epidemiología
13.
Animals (Basel) ; 11(3)2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33801532

RESUMEN

Camels represent an important resource for inhabitants of the most arid regions of the world and their survival is mainly related to environment conditions including the risk of parasitic diseases, which may represent a significant cause of losses in livestock production of these areas. Camels may be parasitized by several hematophagous arthropods, which can be vectors of several diseases including zoonosis. This study aimed to investigate in dromedary camels and their ticks the importance of tick-borne hemoparasites that might be responsible for a recent and obscure morbidity of camels in Al Dhafra region of Abu Dhabi, UAE. Blood samples and ticks from 93 naturally infected camels belonging to 36 herds, affected by variable acute clinical syndromes lasting from 3 to 5 days, were analyzed through molecular techniques for specific DNA presence of different blood pathogens: Anaplasmamarginale/Anaplasmaovis, Anaplasma phagocytophilum, Coxiella burnetii,Babesia spp., and Theileria spp. DNA. All the 72 ticks collected belonged to the Hyalomma dromedarii species and were negative for blood pathogens. n = 15 camels (16.1%) were found positive to the following tick-borne hemoparasites: A. phagocytophilum 11 (11.8%), Coxiella burnetii 3 (3.2%), and Babesia/Theileria spp. 2 (2.1%). One singular camel showed coinfection of C. burnetii and A. phagocytophiulm. Genetic profile of C. burnetii showed a high phylogenetic relatedness to European, Asian and African C. burnetii strains. This is the first laboratory investigation on tick-borne pathogens in camels in UAE, and the first report of A. phagocytophilum and C. burnetii. Moreover, since the detected pathogens are recognized pathogens for humans, this study highlights the zoonotic risk for humans working in camel husbandry.

14.
BMC Vet Res ; 16(1): 174, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-32493341

RESUMEN

BACKGROUND: Mastitis is a disease of economic concern that affects dairy industry worldwide. This study aimed to investigate and identify possible etiologies encountered in an episode of acute gangrenous mastitis in lactating she-camels in Al Dhafra region, Abu Dhabi Emirate, United Arab Emirates (UAE). Beside the routine clinical examination, conventional bacteriological methods were used to isolate and identify possible aerobic/anaerobic bacterial or fungal pathogens from cultured milk samples collected from the mastitic she-camels. Moreover, quantitative real-time polymerase chain reaction (qPCR) was used for the detection of Mycoplasma agalactiae and Mycoplasma bovis strains, and the 16S rRNA gene was sequenced to confirm the isolation. The isolates were also tested for their susceptibility to antimicrobials. RESULTS: Acute gangrenous mastitis is reported in the dromedary camel herd with about 80% morbidity rate among lactating she-camels exhibited acute, painful hard swelling of affected teat, quarter or entire udder. About 41.7% of the infected animals were stamped out for culling due to complete or partial amputation of udder quarters. Streptococcus agalactiae was the sole isolated organism (6 isolates). The antimicrobial susceptibility testing revealed that, the Streptococcus agalactiae isolates were sensitive to both penicillin and ampicillin. Comparison of the 16S rRNA gene sequencing results by BLASTN confirmed the presence of Streptococcus agalactiae with high confidence (100% identity). Phylogenetic analysis indicated clustering of one isolate (CMAUAE accession number; MN267805.1) with Streptococcus agalactiae that infects multi-hosts including humans, while strains (CMBUAE to CMFUAE with accession numbers; MN267806.1 to MN267810.1 respectively) clustered with Streptococcus agalactiae that infects humans. No Mycoplasma spp was detected by qPCR analysis. CONCLUSIONS: In the present study, the Streptococcus agalactiae was found to be the main cause of acute gangrenous mastitis in dromedary camels in UAE. More research should be done to investigate other possible causes of clinical or subclinical mastitis in dromedary camels in UAE.


Asunto(s)
Camelus , Mastitis/veterinaria , Infecciones Estreptocócicas/veterinaria , Streptococcus agalactiae/aislamiento & purificación , Animales , Industria Lechera , Farmacorresistencia Microbiana , Femenino , Gangrena/microbiología , Gangrena/veterinaria , Mastitis/microbiología , Leche/microbiología , ARN Ribosómico 16S , Reacción en Cadena en Tiempo Real de la Polimerasa , Streptococcus agalactiae/efectos de los fármacos , Streptococcus agalactiae/genética , Emiratos Árabes Unidos
15.
Heliyon ; 6(3): e03595, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32258461

RESUMEN

In this study, livestock herders in eastern Sudan were interviewed through structured questionnaire involved 14046 animals in 151 herds (87 camel herds, 51 sheep and 13 goats) from June to September of 2016 in Showak area of Gadarif State to get some epidemiological information on contagious ecthyma (CE) infection. 102 suspected cases of CE were investigated (38 sheep, 22 goats and 42 camels) by a second questionnaire focusing on age and sex of affected animals beside number and localization of the lesions. Representative tissue samples of scab lesion scrapings were collected from a total of 36 suspected sheep, goats and camels for DNA extraction to identify PPV by quantitative real-time PCR and gel-based PCR, then a PCR protocol was used to obtain DNA fragment of B2L gene from six DNAs (2 from each animal species) for sequencing. Phylogenetic tree based on nucleotide sequences was constructed and all data were analyzed statistically. Obtained result has shown morbidity rate of 23.8% and a case fatality rate of 4.7 % in overall investigated animals resulting in a significant economic loss. Within individual herd, the morbidity rate varied from 5.6 to 42.8%, while the case fatality rate ranged between 0 and 33.3%. Camels accounted for the highest case fatality rate with 6.5% compared to sheep and goats which their rates were 2.8% and 1.3%, respectively. 93% of the affected animals were young less than one-year-old. The prevalence of CE was high in the rainy season compared to winter and summer. Out of 36 scab materials collected from sheep, goats, and camels, 24 gave positive specific amplification in real-time PCR and 21 in the gel-based PCR. DNA sequencing confirmed the PCR results. All sequences had a high G + C content of 62.6-63.9%. A BLAST search also revealed that the studied sheep PPV (SPPV) isolates shared 99.08% nucleotide sequence intragroup identity, 96.88-97.27% identity with the goat PPV (GPPV) isolates and together they belong to the Orf virus (ORFV) species, while the camel PPV (CPPV) isolates are close to the Pseudocowpoxvirus (PCPV) species of the PPV genus and share 92.51-93.62 % identity with the GPPV isolates. In conclusion the present study demonstrated that the gross lesion produced by PPV in sheep, goats and camels is generally similar, yet the PPVs circulating in eastern Sudan in camels (PCPV) are genetically distinct from those affecting sheep and goats (ORFV). Contagious ecthyma in eastern Sudan causes significant morbidities and mortalities and control measures, guided by the results of this investigation ought to be implemented.

16.
Vector Borne Zoonotic Dis ; 20(6): 412-417, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32077807

RESUMEN

This study was conducted to evaluate the use of Brucellergene skin test (BST) for the diagnosis of Brucellosis in camels (Camelus dromedarius) in comparison with Rose Bengal test (RBT) and competitive enzyme-linked immunosorbent assay (c-ELISA). A total of 68 apparently healthy adult dromedary camels of either gender from three different geographical locations of Abu Dhabi Emirate, United Arab Emirates (UAE), were included in the study. The skin test was applied on two shaved areas at the middle of the neck: one for the test and the other area was injected with normal saline as a control. Reading was done 72 h postinjection. Results were subjected to Bayesian analysis to assess the test performances in camels. The model estimated the following sensitivity and specificity median values: BST: Se = 70.72%, Sp = 98.82%; RBT: Se = 93.27%, Sp = 97.79%; and c-ELISA: Se = 94.78%, Sp = 98.48%. As the BST investigated in this study proved to be a highly specific test, we propose using it as a confirmatory test in camels particularly when the serological tests give doubtful results on individual animals.


Asunto(s)
Brucelosis/veterinaria , Camelus/microbiología , Pruebas Cutáneas/veterinaria , Animales , Brucelosis/diagnóstico , Brucelosis/microbiología , Ensayo de Inmunoadsorción Enzimática/veterinaria , Rosa Bengala , Sensibilidad y Especificidad , Pruebas Serológicas/veterinaria , Pruebas Cutáneas/métodos
17.
Open Vet J ; 9(3): 263-268, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31998621

RESUMEN

Background: Despite a steady increase in camel husbandry worldwide, pathology of camel diseases is still relatively under-investigated. Clinical hematuria is generally indicative of either acute or chronic urogenital inflammations, traumatic calculous injuries, cancers, corrosive poisonings. Infectious agents are not typically implicated in urinary tract infection of camels. Aim: This study aims to explore possible causes in camels clinically suffered from acute febrile disease with severe hematuria. Methods: To achieve aims of the study culturing of urine samples, microscopic examination for detection of blood parasites, phenotypic and genotypic characterization for the identification of isolated bacteria were followed. Results: Conventional bacteriology enabled identification of Salmonella enterica subsp. enterica serovar typhimurium which further genotyped by 16S rRNA gene sequencing. Microscopic examination of Giemsa stained blood smears from both infected dromedary camels revealed the presence of pleomorphic Theileria piroplasms. The results suggest that the clinical symptoms were as coinfection induced by salmonellosis and theileriosis. Conclusion: Given these remarkable findings, further research should aim to better characterize the opportunistic pathogens associated with camel theileriosis, as well as to determine other possible infectious agents of the camel urinary tract.


Asunto(s)
Camelus , Coinfección/veterinaria , Hematuria/veterinaria , Salmonelosis Animal/microbiología , Salmonella enterica/aislamiento & purificación , Theileria/aislamiento & purificación , Theileriosis/parasitología , Animales , Coinfección/microbiología , Coinfección/parasitología , Hematuria/microbiología , Hematuria/parasitología , Emiratos Árabes Unidos
18.
Emerg Microbes Infect ; 6(11): e101, 2017 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-29116217

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) was identified on the Arabian Peninsula in 2012 and is still causing cases and outbreaks in the Middle East. When MERS-CoV was first identified, the closest related virus was in bats; however, it has since been recognized that dromedary camels serve as a virus reservoir and potential source for human infections. A total of 376 camels were screened for MERS-Cov at a live animal market in the Eastern Region of the Emirate of Abu Dhabi, UAE. In all, 109 MERS-CoV-positive camels were detected in week 1, and a subset of positive camels were sampled again weeks 3 through 6. A total of 126 full and 3 nearly full genomes were obtained from 139 samples. Spike gene sequences were obtained from 5 of the 10 remaining samples. The camel MERS-CoV genomes from this study represent 3 known and 2 potentially new lineages within clade B. Within lineages, diversity of camel and human MERS-CoV sequences are intermixed. We identified sequences from market camels nearly identical to the previously reported 2015 German case who visited the market during his incubation period. We described 10 recombination events in the camel samples. The most frequent recombination breakpoint was the junctions between ORF1b and S. Evidence suggests MERS-CoV infection in humans results from continued introductions of distinct MERS-CoV lineages from camels. This hypothesis is supported by the camel MERS-CoV genomes sequenced in this study. Our study expands the known repertoire of camel MERS-CoVs circulating on the Arabian Peninsula.


Asunto(s)
Camelus/virología , Variación Genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/clasificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Animales , Análisis por Conglomerados , Femenino , Genoma Viral , Genotipo , Masculino , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Filogenia , Recombinación Genética , Análisis de Secuencia de ADN , Glicoproteína de la Espiga del Coronavirus/genética , Emiratos Árabes Unidos
19.
PLoS One ; 12(9): e0184718, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28902913

RESUMEN

Camels are known carriers for many viral pathogens, including Middle East respiratory syndrome coronavirus (MERS-CoV). It is likely that there are additional, as yet unidentified viruses in camels with the potential to cause disease in humans. In this study, we performed metagenomic sequencing analysis on nasopharyngeal swab samples from 108 MERS-CoV-positive dromedary camels from a live animal market in Abu Dhabi, United Arab Emirates. We obtained a total of 846.72 million high-quality reads from these nasopharyngeal swab samples, of which 2.88 million (0.34%) were related to viral sequences while 512.63 million (60.5%) and 50.87 million (6%) matched bacterial and eukaryotic sequences, respectively. Among the viral reads, sequences related to mammalian viruses from 13 genera in 10 viral families were identified, including Coronaviridae, Nairoviridae, Paramyxoviridae, Parvoviridae, Polyomaviridae, Papillomaviridae, Astroviridae, Picornaviridae, Poxviridae, and Genomoviridae. Some viral sequences belong to known camel or human viruses and others are from potentially novel camel viruses with only limited sequence similarity to virus sequences in GenBank. A total of five potentially novel virus species or strains were identified. Co-infection of at least two recently identified camel coronaviruses was detected in 92.6% of the camels in the study. This study provides a comprehensive survey of viruses in the virome of upper respiratory samples in camels that have extensive contact with the human population.


Asunto(s)
Camelus/virología , Virosis/veterinaria , Zoonosis/virología , Animales , Coronaviridae/clasificación , Coronaviridae/genética , Coronaviridae/aislamiento & purificación , Humanos , Metagenómica , Filogenia , Análisis de Secuencia de ADN , Emiratos Árabes Unidos/epidemiología , Virosis/virología
20.
Open Vet J ; 7(2): 174-179, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28717601

RESUMEN

We investigated two outbreaks of papillomatosis between 2013 and 2015 in Al Ahsa region of eastern Saudi Arabia involving fourteen dromedary camels. The disease affected both young and adult animals and occurred in coincidence with demodectic mange infestation. Diagnosis was made based on gross and histopathological characteristics of the wart lesion and was confirmed by PCR. Rolling circle amplification followed by degenerate primer PCR and sequencing of the amplicons revealed the presence of both Camelus dromedarius papillomavirus types 1 and 2, previously identified in infected dromedaries in Sudan.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...